"Проектирование и технология электронной компонентной базы"

Направление подготовки "Электроника и наноэлектроника".

Форма обучения - очная. Объем: 144 часа.

Категория слушателей: инженеры с высшим образованием.

1. Цель освоения программы

Целью изучения настоящей программы является ознакомление слушателей с основными видами электронной компонентной базы (ЭКБ), методами её проектирования и особенностями технологии её производства.

2. Требования к слушателям программы

При освоении программы «Проектирование и технология электронной компонентной базы» обучающемуся необходимо:

Знать:

- основные законы и принципы современной науки о материалах, применяемых в электронике;
- основные модели и схемы, описывающие электронные свойства материалов;
- типовые задачи и их решения.

Уметь:

- использовать известные законы и принципы для анализа физических процессов протекающих в материалах;
- применять математические и физические модели для решения практических задач.

Владеть:

- опытом работы с лабораторным оборудованием;
- опытом представления экспериментальных результатов и их анализа.

Вышеперечисленные знания, умения и навыки должны быть приобретены в результате освоения следующих дисциплин в объеме программы технического университета, предшествующих программе «Проектирование и технология электронной компонентной базы»:

- высшая математика;
- физика;
- физика полупроводников;
- теоретические основы электротехники.

3. Компетенции обучающегося, формируемые в результате освоения программы (модуля)

В результате освоения программы обучающийся должен:

Знать:

• основные принципы расчета, проектирования, конструирования и модернизации электронной компонентной базы с использованием систем автоматизированного проектирования и компьютерных средств.

Уметь:

- выбирать оптимальную конструкцию и технологию изготовления конкретных типов электронной компонентной базы;
- планировать разработку технологических маршрутов изготовления изделий электронной техники.

Владеть:

- навыками использования современных систем автоматизированного проектирования (САПР, САD) изделий электронной техники различного назначения;
- основами методов проектирования конструкции и технологии изготовления электронной компонентной базы.

4. Содержание программы (модуля)

4.1. Наименование и содержание разделов программы (модуля)

№ раздела	Наименование раздела	Содержание раздела		
1	Общие сведения о существующей номенклатуре электронно-компонентной базы.	Классификация и виды ЭКБ. Факторы, определяющие построение ЭКБ. Эволюция ЭКБ, текущее состояние и перспективы развития. Ключевые проблемы (миниатюризация, масштабирование, отвод тепла, корпусирование). Этапы проектирования. Основы применения систем автоматизированного проектирования (САПР, CAD).		
ы (ППП), основы тири микроэлектронной ППП		Классификация и типы ППП (диоды, транзисторы, тиристоры). Конструкция и параметры дискретных ППП. Основы микроэлектронной технологии: планарная		

	проектирования.	технология, эпитаксия, имплантация, травление,
		окисление. Методы получения топологического
		рисунка. Процессы сборки и герметизации.
		Перспективные технологические процессы на
		новых полупроводниковых материалах.
		Моделирование технологических процессов и
		автоматизированный расчёт характеристик ППП.
3	Интегральные микросхемы	Классификация и типы ИМС. Монолитные и
	(ИМС) и САПР для их	гибридные, аналоговые, цифровые и смешанные
	проектирования.	ИМС. Интегральные элементы и компоненты.
		ИМС на биполярных и полевых транзисторах.
		Структуры сверхбольших ИМС. ИМС на
		полупроводниках группы $A_{III}B_{V}$. Примеры
		основных типов ИМС.
		Технология изготовления биполярных и полевых
		транзисторов ИМС. Технологии изготовления
		тонкоплёночных и толстоплёночных
		(LTCC, HTCC) ГИС. Технология изготовления
		цифровых и запоминающих устройств.
		Основы топологического описания проекта,
		проверка топологии на соответствие
		технологическим и электрическим правилам
		проекта. Диагностика и исправление ошибок
		проектирования.
4	Оптоэлектронные приборы и	Общие принципы преобразования оптического
•	устройства.	излучения в электрическую энергию.
		Фотодетекторы и светоизлучающие диоды.
		Полупроводниковые лазеры. Элементы солнечных
		батарей.
		Линейные и матричные фоточувствительные
		приборы (ПЗС, КМОП).
		Принципы построения приборов различных длин
		волн.
5	Изделия пьезотехники и	Прямой и обратный пьезоэффект. Материалы,
	акустоэлектроники.	обладающие пьезоэлектрическими свойствами.

		Типы объёмных и поверхностных акустическ			
		волн. Резонаторы на поверхностных и объёмни			
		акустических волнах.			
		Устройства для обработки сигналов: линии			
		задержки, резонаторы, фильтры, ответвители,			
		генераторы, сенсорные экраны.			
6	Блоки и модули	Тенденции развития ЭКБ, блоки и модули РЭА как			
	радиоэлектронной	новое поколение ЭКБ. Модули класса «система в			
	аппаратуры (РЭА), основы	корпусе». Стандартизация, типизация и			
	· · · · · · · · · · · · · · · · ·	унификация блоков и модулей.			
		Многослойные печатные платы на основе			
	просктирования.	стеклотекстолита, керамики и комбинированн			
		материалов. Технологический маршрут			
		изготовления печатных плат.			
		Технологии монтажа электронных компонентов.			
		Объёмный монтаж, поверхностный монтаж,			
		внутренний монтаж. Технологический маршрут			
		сборочных операций блоков и модулей РЭА.			
		Базовые принципы автоматизированного			
		проектирования печатных плат.			
7	Современные методы	Производственные и экономические аспекты			
	организации разработки и	разработки и производства ЭКБ.			
	производства ЭКБ.	Модели взаимодействия разработчик-			
		изготовитель: интегрированная модель, fabless-			
		модель, смешанная модель.			
		Основные принципы аутсорсинга при разработке			
		производстве ЭКБ. Библиотеки для			
		проектирования. Правовые аспекты			
		взаимодействия.			

4.2. Лабораторные работы

№ п/п	№ раздела программы (модуля)	Наименование лабораторных работ	Трудоемкость (в часах)
1	2	Моделирование профиля распределения примеси и вольтамперных характеристик полупроводниковой структуры.	4
2	2	Технохимия и фотолитография кремниевых пластин.	4
3	3	Моделирование схемотехнического решения ИМС.	2
4	3	Проектирование фрагмента топологии ИМС и проверка топологии на соответствие технологическим нормам и электрическим правилам проекта.	4
5	6	Проектирование топологии печатной платы.	2
6	1-7	Заключительное занятие	2

5. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения программы

По программе «Проектирование и технология электронной компонентной базы» в качестве самостоятельной работы предусмотрено написание реферата по конкретной теме для каждого обучающегося, который выполняется под текущим контролем преподавателя и представляется в письменном виде для проверки, обсуждения совместно с обучающимися и для оценки.

6. Материально-техническое обеспечение программы:

Компьютерный класс с установленным пакетом программ CAПР Keysight ADS, измерительное оборудование.

7. Формы аттестации

- 1. Освоение ДПП завершается итоговой аттестацией слушателей в форме зачета.
- 2. Лицам, успешно освоившим ДПП и прошедшим итоговую аттестацию, выдается удостоверение о повышении квалификации установленного образца.
- 3. Лицам, не прошедшим итоговую аттестацию или получившим на итоговой аттестации неудовлетворительные результаты, выдается справка об обучении или о периоде обучения по образцу, самостоятельно устанавливаемому организацией.